知识点:曲率计算公式推导


结论

曲率(k):描述曲线的平均弯曲程度,数学表达$\bar{K}=\left|\frac{\Delta \alpha}{\Delta s}\right|$,

计算公式:
$$
R=\frac{1}{k}=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left[1+\left(f^{\prime}\right)^{2}\right]^{\frac{3}{2}}}{f^{\prime \prime}}
$$

推导过程

设曲线的直角坐标方程式$y=f(x)$,且$f(x)$具有二阶导数,这时$f\prime(x)$连续,从而曲线是光滑的。

因为$\tan\alpha=y\prime$,所以
$$
a=\arctan y\prime \
\frac{\mathrm{d} \alpha}{d x}=\left(\arctan \mathrm{y}^{\prime}\right)^{\prime} \
\mathrm{d}\alpha =\left(\arctan \mathrm{y}^{\prime}\right)^{\prime}{d x}=
\frac{y\prime\prime}{1+y\prime^2}dx
$$
又因为弧微分公式[^1]为
$$
\mathrm{ds}=\sqrt{1+y^{\prime 2}} \mathrm{d} \mathrm{x}
$$
所以
$$
k=\frac{d\alpha}{ds}=\frac{f^{\prime \prime}}{\left[1+\left(f^{\prime}\right)^{2}\right]^{\frac{3}{2}}}
$$

参考

[^1]: 弧微分公式及其推导 https://www.cnblogs.com/fujj/p/9704589.html


Final

If this post is helpful to you, why not reward me?
Author: Gatsby
Reprint policy: All articles in this blog are used except for special statements CC BY 4.0 reprint polocy. If reproduced, please indicate source Gatsby !
 Previous
 高等数学(上册)第四章:不定积分 高等数学(上册)第四章:不定积分
不定积分的概念与性质原函数与不定积分的概念 原函数存在定理 基本积分表 不定积分的性质 换元积分法 分部积分法两函数乘积的导数公式为$$(u v)^{\prime}=u^{\prime} v+u v^{\prime}\u v^
2020-02-08
Next 
知识点:如何通俗理解泰勒公式? 知识点:如何通俗理解泰勒公式?
如何通俗地解释泰勒公式? - 马同学的回答 - 知乎 https://www.zhihu.com/question/21149770/answer/111173412 如何通俗地解释泰勒公式? - 知乎用户的回答 - 知乎 https:/
2020-02-08
  TOC